
Limb Hacker Guide
Limb Hacker version 1.1

Hi, Toby here from Noble Muffins.
This here is a slicing kit. You give it a character and

a rag-doll version of that character, and it’ll hack the limbs
off. It can also hack off the torso and head, and cut
anywhere along the bone.

This package includes a demo where you play as a
sniper with a good sight on a militiaman with an AK.

You can slice from a particular joint with the Limb Hacker API or use the Sliceable-
By-Point component to slice whatever’s nearest to a point in three-space.

Good luck!

Acknowledgments! 3

Before You Start! 3

Preparing an object! 3

Ideal Mesh! 3

Infill! 4

Alternate Prefab! 6

To Ragdoll Or Not! 6

In detail! 7

Example 1! 7

Example 2! 7

Whut?! 7

Abstract Slice Handler! 7

Slice By Point! 8

Performance! 9

Do I need to care?! 9

General Considerations! 9

Limb Hacker API! 9

Sever By Joint! 9

Sever By Point! 10

Contact! 10

Acknowledgments
John Ratcliff, a software engineer at NVIDIA, wrote the basic Plane-Triangle split

in C++ and his code can be found here: http://codesuppository.blogspot.com/2006/03/
plane-triangle-splitting.html

This kit began as a translation of his code into C#, but was heavily reworked to
create Turbo Slicer and further reworked into this.

A vector-vector transformation algorithm used is pulled from a 1992 forum post by
a Ben Zhu who worked for SGI at the time. The thread can be found here: http://
steve.hollasch.net/cgindex/math/rotvecs.html

The Sniper Demo’s militiaman was created by artist Nigel Kitts.

Before You Start
You can access Limb Hacker via the static property LimbHacker.instance. An

instance in the scene will be created if one does not already exist. You may also create the
instance yourself by adding the LimbHacker component to a game object anywhere in the
scene where you are using it.

Preparing an object
To slice an object, Limb Hacker needs to be able to find a

SkinnedMeshRenderer. It does support meshes with multiple materials.
If you feed an object meeting the above requirements directly to Limb Hacker via

the APIs described later in this document, it will slice. However to configure Limb Hacker’s
behavior, you need to add the Hackable component to this object. When you feed an
object to Limb Hacker, it will try to find a single Hackable component either on it or in its
children and use the configuration described there.

ToRagdollOrNot is a component responsible for determining whether or not a
slice results in the entity becoming a ragdoll. You can use it (it is configurable) or write your
own decider by extending the abstract class AbstractSliceHandler. Place your
component next to the Sliceable (same object).

Ideal Mesh
The slicer is designed assuming it will be dealing with closed, textures meshes.

Meshes which have layered, hidden geometry or triangles which pass through each other
may result in infill anomalies. (The “infill” is the geometry made up to cover holes made by
the slice.) An ideal mesh has geometry like so:

http://codesuppository.blogspot.com/2006/03/plane-triangle-splitting.html
http://codesuppository.blogspot.com/2006/03/plane-triangle-splitting.html
http://codesuppository.blogspot.com/2006/03/plane-triangle-splitting.html
http://codesuppository.blogspot.com/2006/03/plane-triangle-splitting.html
http://steve.hollasch.net/cgindex/math/rotvecs.html
http://steve.hollasch.net/cgindex/math/rotvecs.html
http://steve.hollasch.net/cgindex/math/rotvecs.html
http://steve.hollasch.net/cgindex/math/rotvecs.html

The closed surface means that if you slice it pretty much anywhere, you will get a
cross section with closed polygons.

Infill
The hole made by the slice can be filled in with any texture material provided using

the Hackable component’s “Infill Material” property.

There are two infill algorithms; sloppy and meticulous.

The former is default. The name may sound less pro, but it’s the one you want
99% of the time. You may drop in a texture and stop reading here, however I will go into
detail in case you are encountering artifacts.

Limb Hacker is developed from a prior product – Turbo Slicer – which is designed
to rapidly slice whole objects repeatedly. The italicized words are key and influence its
design, including how it differs from Limb Hacker. When a whole object, like Synergy
Blade’s boss character, or a donut, is sliced, the cross section of the slice will often feature
multiple polygons. If a naive or crude infill is applied, there will be hideous polygons
between the slice holes. Even if there is only one polygon, it may have an irregular shape
which is lends itself to artifacts. The meticulous infill procedure was developed for this and
is the only infill algorithm in that product.

However, it has a problem that is exacerbated in Limb Hacker; if the slices itself is
imperfect, it will fail to read it and abort; no infill will occur. This is exacerbated because
Limb Hacker attempts to ignore irrelevant vertices – to avoid worse anomalies – and
occasionally ignored vertices overlap with the slice plane. (Slicing across the shoulders is
liable to do this, depending on how a mesh is skinned.)

Limb Hacker, however, is not intended to slice whole models; it is meant to slice
through character limbs. The vast majority of slices either have single, regular polygons in
their cross section or something close to it at a glance.

Therefore, a naive, sloppy infiller has been added to Limb Hacker. It does not
attempt to distinguish polygons (a delicate process) and creates the infill using a simple
triangle fan.

Here we see, using a test pattern to illustrate one difference, the texture mapping
from the sloppy infill (left) next to the meticulous infill (right):

With gore textures and in motion, the difference is unnoticeable. The sloppy infiller
will also perform passable infills in situations where the meticulous infill will outright refuse.

When should you use the meticulous infill? There may be some edge cases –
such as the forearm of a human skeleton – where a “bone” is depicted in the mesh with
multiple objects and only the meticulous infill can correctly fill each hole independently.

If slicing a particular bone looks bad with either, you can abstain from slicing that
bone and configure the sliceByPoint feature to ignore it. How to do this is explained later in
this document.

One other difference between Limb Hacker and Turbo Slicer is the requirement in
Turbo Slicer that the infill texture be atlassed. This is the case there due to its goal of
slicing objects to shreds from multiple angles; Unity treats each material as a “sub mesh”,
which means that if what appears to be a single piece of geometry has multiple materials,
it will actually be composed to separate, open sub meshes rather than one closed whole.
This will break infill on subsequent slices. (This also reduces draw calls and texture count;
important on lower end mobiles.) Whereas Limb Hacker does not have this design
requirement, and using a single material is easier for the user, we have changed Limb
Hacker to use a single material.

Alternate Prefab
This is your character’s rag-doll prefab. Limb Hacker will use this to perform a

slice. Its bone hierarchy must match the original character. If you leave it blank, the
character will not become a rag-doll.

To Ragdoll Or Not
When Limb Hacker performs a sever, it yields two objects, each containing part of

the original’s geometry. It must decide whether new objects are based on the original
object, or the ragdoll (the “alternate prefab”).

You can write the code for this yourself by extending AbstractSliceHandler
(described below) and adding your component to the object, or you can use our pre-made
component, ToRagdollOrNot.

This component is called upon during the slice. It checks for the presence of
bones in any given slice result. In the demo, we list the head, foot_L and foot_R bones by
adding their transforms to the Bones list.

In the included demos, the part that remains a whole character with agency (not a
ragdoll) is the one that has the head, left foot and right foot. (We could add more but that
would be superfluous). Therefore any part that does not have the head, left foot and right
foot is not a live character and needs to become a ragdoll.

If you want to copy the behavior in our demo, go ahead and copy our settings.
In detail
In boolean terms, we might say:

becomeRagdoll = NOT (has(Head) AND has(foot_L) AND has(foot_R))

So we set the “group rule” to “and”, and the “totality rule” to “not”. (The various
items’ presence will be combined using the and operator and the whole will be inverted.)

Let’s see how this might play out in practice.
Example 1
Suppose we shoot off his hand. We now have two entities; one which has only the

severed hand, and the other which possesses the head and both feed. For each of those
entities, we evaluate the data like so:

becomeRagdoll = NOT (FALSE AND FALSE AND FALSE) = TRUE
becomeRagdoll = NOT (TRUE AND TRUE AND TRUE) = FALSE

So we see one of the resultant entities will become a ragdoll, and the other will
not. In the demo, this means the hand will fall to the ground (it is a ragdoll, governed by
physics) while the other result – the live character – will remain governed by its AI and
drop its gun and run off.

Example 2
Suppose we sever it at the head. We now have two entities; one with the head,

and the other with the rest of the body. If we drop each entities’ presence data into the
function, we see these:

becomeRagdoll = NOT (FALSE AND TRUE AND TRUE) = TRUE
becomeRagdoll = NOT (TRUE AND FALSE AND FALSE) = TRUE

So both pieces are ragdollified.
Whut?
If you want to mimic the behavior of the demo, go ahead and copy our settings.
If you want to write your own decider, read on.

Abstract Slice Handler
This is an abstract class that inherits from MonoBehavior. You may extend and

implement its cloneAlternate method. (Please ignore its handleSlice method; this will
become relevant in the next update.)

The clone alternate method permits you to decide if a given slice half will be based
on the original object or the alternate prefab (usually a ragdoll).

public virtual bool cloneAlternate (Dictionary<string,bool>
hierarchyPresence) {

! bool useAlternatePrefab;
! // ...
! return useAlternatePrefab;

}

When a slice occurs, for each half this method will be called with a dictionary
describing which bones are present. You could, for example, return false if the head is not
present. ToRagdollOrNot implements this method; you may examine it as an example.

Slice By Point
The Limb Hacker API (described later) offers a method to slice by a given point in

world space instead of specifying a joint. You might use this if – for example – you have a
point in world space from a ray cast or a collision and want to slice whatever it looks like
it’s supposed to slice.

However this requires configuration. Not all slices look good; in testing, we
found that slicing (for example) the character’s collar bone joint yielded ugly results. A
sufficiently good heuristic hasn’t been developed yet. In the meantime, the Hackable
component lets you decide which bones are severable.

Only bones will be selectable. Objects attached to bones in the hierarchy – like the
Sniper Demo’s machine gun – will follow their parent bones.

With this information, the severByPoint method can avoid artifacts.

Performance
Do I need to care?

Yes, if you plan to release on mobiles. Desktops and notebooks ought to be able
to handle very large data sets without noticeable lurch, however very low-end mobiles will
not be able to.

General Considerations
Mesh slicing is a heavily CPU bound operation. It is heavily optimized (albeit while

remaining platform independent) but in the end all operations take time to work. Turbo
Slicer – from which Limb Hacker inherits must code – was build to permit the game
Synergy Blade to run at 60 FPS on iPad 1 while slicing repeatedly, without causing
lurches. However to say “Turbo Slicer goes at 60 FPS” would be simplistic.

To reach 60 FPS, your game must have the frame ready & delivered to the screen
in about 16 milliseconds, and everything you ask it to do eats into that time budget. To
accomplish 60 FPS without visible lurches, we had the game produce a frame in a bit
under 16 milliseconds, so that there was still enough free time to add a slice every so often
without going over.

It did need to be very fast to fit in the margin, and this current version is approx.
30% faster than what was released with the first Synergy Blade. But the basics facts
remain; adding work adds time and to avoid a lurch, you need to make time for it.

What adds work is geometry. Every triangle & vertex is work for it. To meet the
iPad 1, 60 FPS target we kept the models under 400 or so triangles. A newer iPad can
handle more, a PC or laptop can handle vastly more and if you target instead 30 FPS
(which is legitimate) than you can give it a lot more geometry.

Limb Hacker API
There are two public APIs. They are not static, but can be accessed via the static

field LimbHacker.instance which will automatically create an instance if one does not exist.
GameObject[] severByJoint(GameObject go, string jointName, float

rootTipProgression = 0f)
GameObject[] severByPoint(GameObject go, Vector3 reasonablyClosePoint)

Each of these takes a given GameObject conforming to the specifications laid out
earlier in this document (See: Object Requirements). Each returns an array containing
either the one object (if not sliced) or two objects (each result of a slice).

Sever By Joint
Sever by joint will hack off part of the character from any specified joint. It has an

optional parameter; rootTipProgression. This is a float with a range [0,1) that tells where
between the specified joint and its child you want the slice to occur. (If it has multiple

children, it will take their mean position.) For example if we gave it the bone name of the
left elbow and a root-tip-progression of 0.5, it would slice halfway through the left forearm.

Sever By Point
Sever by point will take a position in world space, find the nearest bone and try to

sever at the right place. For example, a position reasonably close to halfway between the
left elbow and wrist ought to slice halfway through the left forearm.

This is used in the Sniper Demo; the script LHD2Enemy calls this method with a
point taken from a ray cast hit. To get a sufficiently accurate effect, multiple colliders are
placed on the live character rather than a single bounding box. This means that a ray cast
can hit reasonably close to the arm its aimed at, rather than way out on the side of a
bounding box or sphere.

This feature requires configuration. See “Slice By Point” earlier in this
document.

Contact
If you run into any problems at all, let me know at toby@noblemuffins.com.

mailto:toby@noblemuffins.com
mailto:toby@noblemuffins.com

